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A: A Tale of Two Queues

Problem
Two cash registers, and a queue of individuals leading up to each of them. Given how much time
each individual will spend at the register, which queue should you enter in order to get to a register
as soon as possible?

Solution

1. If you enter a queue, you get to the register at time equal to the sum of times each individual in
that queue spends at the register.

2. Let L, R be the sum of times for each individual in the left and right queues, respectively.
3. Three cases:

• L < R: output “left”
• L > R: output “right”
• L = R: output “either”

Statistics: 20 submissions, 13+ accepted
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C: Circular Painting

Problem
Given a description of a figure in terms of disjoint circular sectors, output its area.

Solution

1. Circular sectors are non-intersecting.
2. Calculate their areas independently; answer is their sum.
3.

A =
θ

360
·
(
πr22 − πr21

)

r2

r1A

θ

Statistics: 11 submissions, 9+ accepted
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H: Hot Dog Deals

Problem
You can buy one hot dog for 299 ISK, one soda for 249 ISK, one hot dog and one soda for 499 ISK,
and two hot dogs and one soda for 549 ISK. What is the minimum amount of ISK needed to get n
hot dogs and m sodas?

Solution

1. Gotcha: May actually be cheaper to buy more than n hot dogs or m sodas.
• For two hot dogs, it’s better to use the second offer to buy two hot dogs and one soda (549 ISK)

than two single hot dogs (2 · 299 = 598 ISK).

2. This observation leads to a greedy algorithm: Use the second offer while we have at least two hot
dogs left.
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hot dogs and m sodas?

Solution

1. Greedy algorithm: c← 0

• While n ≥ 2, buy second offer: c← c + 549; n← n− 2; m← m− 1

• If n = 1 and m ≥ 1, buy first offer: c← c + 499; n← 0; m← m− 1

• If n = 1 and m = 0, buy hot dog: c← c + 299; n← 0

• While m ≥ 1, buy soda: c← c + 249; m← m− 1

2. Can be implemented in O(1) time.
3. Other approaches:

• Loop through number of times we use second offer, and then apply simpler greedy algorithm: O(n)
• Dynamic Programming: O(nm)

Statistics: 27 submissions, 9+ accepted
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G: Group Lockers

Problem
There are m columns of lockers, and in column i there are ci lockers available for rent. What is the
smallest span of columns where you can rent n lockers?

Solution

1. Task: Find smallest subarray with sum ≥ n.
2. Naive solution: For each left index i, do a linear search for the smallest index j such that

ci + · · ·+ cj ≥ n.

n = 8

i

i i ij j

1 0 2 6 3 0 1 7

3. Instead of restarting the search for j each time, keep track of the current sum and increment j as
needed.
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G: Group Lockers

Problem
There are m columns of lockers, and in column i there are ci lockers available for rent. What is the
smallest span of columns where you can rent n lockers?

Solution

n = 8

sum = 0

i

i i ij j

1 0 2 6 3 0 1 7

1. i is incremented at most n times, j is incremented at most n times: O(n)
2. Other approaches:

• Compute prefix sums, and then binary search. O(n log n)

Statistics: 13 submissions, 3+ accepted
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B: Back to Studying

Problem
There are n final exams. You need to spend ci days studying for ith exam, which will be held on day
di. How many days until you must start studying?

Solution

1. For each exam, we want to start studying as late as possible; ideally on day di − ci.
2. However, we may already be studying for a later exam during some of those days. In that case we

can just start our preparations for exam i a couple days earlier.
3. Going through the exams in decreasing order of di, we can keep track of how many more days of

studying we need for the exams seen so far, and decrease this counter as we move past days where
we can study.

4. If we get to day 0 and still have more than one day of studying left, output “impossible”.
Otherwise, output the earliest day we used for studying.

Statistics: 21 submissions, 2+ accepted
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E: Emergency Exits

Problem
Given a directed, weighted graph, and a set of vertices that are emergency exits, find the vertex that
is farthest away from all emergency exits.

Solution

1. Slow solution: For each vertex find shortest paths to all other vertices using Dijkstra’s algorithm.
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2. Trick: We can add a special node to represent all emergency exits.
3. Trick: We can reverse the edges. Now we just need to run Dijkstra once from G: O(m log n)

Statistics: 1 submissions, 1+ accepted



E: Emergency Exits

Problem
Given a directed, weighted graph, and a set of vertices that are emergency exits, find the vertex that
is farthest away from all emergency exits.

Solution

1. Slow solution: For each vertex find shortest paths to all other vertices using Dijkstra’s algorithm.

A

B

C

D

E

F

G

4

2

1

3

1

4

6

0

0

4

2

1

3

1

4

6

0

0

2. Trick: We can add a special node to represent all emergency exits.
3. Trick: We can reverse the edges. Now we just need to run Dijkstra once from G: O(m log n)

Statistics: 1 submissions, 1+ accepted



E: Emergency Exits

Problem
Given a directed, weighted graph, and a set of vertices that are emergency exits, find the vertex that
is farthest away from all emergency exits.

Solution

1. Slow solution: For each vertex find shortest paths to all other vertices using Dijkstra’s algorithm.
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F: Fetch the Stuff

Problem
There are a set of doors between rooms in a building. Some doors can only be used in one direction.
Given a set of important rooms, find a walk around the building that goes from room 1 to room n,
and visits all important rooms.

Solution

1. Can be viewed as a directed graph: rooms are vertices and doors are edges from/to/between
different rooms.

2. Necessary condition: Room 1 must be able to reach all important rooms, and all important rooms
must be able to reach room n.

3. Now consider two important rooms u and v. If there is no path from u to v, then we must visit
room v before room u.

4. This can be turned into a “dependency” graph, where there is an edge from vertex v to vertex u if
v must be visited before vertex u.
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F: Fetch the Stuff

Problem
There are a set of doors between rooms in a building. Some doors can only be used in one direction.
Given a set of important rooms, find a walk around the building that goes from room 1 to room n,
and visits all important rooms.

Solution (ctd)

5. What we’re now looking for is a “topological order” of the rooms in this new graph. Can be found
with DFS, or determined that there is no such order.

6. To construct the walk, go through the important rooms in a topological order, and find paths
between them with DFS.

7. DFS from important rooms to all other rooms, topological sort, and reconstruct answer:
O(kn + k + kn) = O(kn)

8. Other approaches:
• Dynamic Programming over Strongly Connected Components: O(nk)
• Backtracking with some clever pruning: O(nk)

Statistics: 2 submissions, 1+ accepted
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D: Danger Zone

Problem
A group of n circles above an infinite line, with an entrance in the middle. Starting from far away, is
it possible to reach the entrance without coming too close to the wall or the circles?
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Solution

1. To deal with the minimum distance restriction, we can increase the radius of each circle, and
move the infinite line.

2. Split the store into two parts.
3. Create a graph with circles and A and B as vertices. Edge between two objects if they intersect.
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D: Danger Zone

Solution (ctd.)

4. If there is a path from A to B, the entrance is sealed.

5. Otherwise there is always a way in.
6. Use BFS/DFS/Union-Find: O(n2)

7. Use integers for all distance comparisons.
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